Atla vs Reverse Osmosis

Atla vs Reverse Osmosis

Why is Atla better than reverse osmosis?

Better Health

Reverse osmosis systems excel at removing contaminants, but they also remove nearly all of the beneficial minerals. Science has confirmed that drinking reverse osmosis water causes more severe health problems than drinking water with contaminant levels within EPA guidelines.

As greater than 92% of the United States population has tap water that does not exceed EPA limits on a single contaminant (Data source: United States EPA, 2022), reverse osmosis water filters are an over-recommend solution that does more bodily harm than good. Learn more: Reverse Osmosis Water Exposed

On adding minerals back into reverse osmosis water, scientists concluded that "possibly none of the commonly used ways of re-mineralization could be considered optimum, since the water does not contain all of its beneficial components ... even the relatively low intake of the element with drinking water may play a relevant protective role."

Atla is 3rd party lab certified to remove contaminants while preserving the beneficial minerals.

So, while reverse osmosis has more contaminant reduction, because it also removes the beneficial minerals, it produces less healthful water than Atla, even if some minerals are added back in.

Zero Waste

Atla wastes no water. Reverse osmosis systems waste 2-20 gallons for every gallon of filtered water produced under normal usage conditions. (Membrane efficiency is not the actual efficiency of reverse osmosis systems.)

Lower Maintenance

Atla requires only one filter change annually. There is no reverse osmosis membrane to test and replace periodically or air-bladder pressure tank to service or replace.

Nearly all Atla Water Systems sold since 2009 are still in use today.

Quick Installation

Unlike reverse osmosis systems, Atla requires no drain line connection.

Atla can supply the cold side of the existing kitchen faucet, so a dedicated faucet is not required. But, of course, Atla can also power a dedicated faucet. And we offer installation services too.

Fast Flow Forever

Atla flows continuously at one gallon per minute and never runs out of water. On the other hand, reverse osmosis systems have slow flow that slows even more the longer the faucet is open, and they run out of water quickly.

Better Taste

Atla is the only premium under-sink filter with technology that imbues water with a lighter and more vibrant mouthfeel. Atla customers rave about the taste!

Back to blog

Collapsible content

Science Supporting Our Better Health Claim

WHO Report-Health Risks from Drinking Demineralized Water

Anonymous (1995) GOST R 50804-95 Astronaut environment in piloted spaceships – general medical and technical requirements. (In Russian.) Russian Governmental Standard. Gosstandard Rossii, Moscow.

Anonymous (1994) Epidemiologic notes and reports lead-contaminated drinking water in bulk-storage tanks—Arizona and California, 1993. MMWR 43(41), 751; 757-758.

Basnyat, B., Sleggs, J. and Spinger, M. (2000) Seizures and delirium in a trekker: the consequences of excessive water drinking? Wilderness Environ. Med. 11, 69-70.

Bernardi, D., Dini, F.L., Azzarelli, A., Giaconi, A., Volterrani, C. and Lunardi, M. (1995) Sudden cardiac death rate in an area characterized by high incidence of coronary artery disease and low hardness of drinking water. Angiology 46, 145-149.

CDC (1994) Hyponatremic seizures among infants fed with commercial bottled drinking water – Wisconsin, 1993. MMWR 43, 641-643.

DgfE (Deutsche Gesellschaft für Ernährung) (1993) Drink distilled water? (In German.) Med. Mo. Pharm. 16, 146.

Donato, F., Monarca, S., Premi, S., and Gelatti, U (2003) Drinking water hardness and chronic degenerative diseases. Part III. Tumors, urolithiasis, fetal malformations, deterioration of the cognitive function in the aged and atopic eczema. (In Italian.) Ann. Ig. 15, 57-70.

Durlach, J. (1988) The importance of magnesium in water. In Magnesium in Clinical Practice (ed. J.Durlach), pp 221-222, John Libbey & Co Ltd, London.

Durlach, J., Bara, M. and Guiet-Bara, A. (1989) Magnesium level in drinking water: its importance in cardiovascular risk. In Magnesium in Health and Disease (ed. Y.Itokawa and J.Durlach), pp. 173-182, J.Libbey & Co Ltd, London.

Eisenberg, M.J. (1992) Magnesium deficiency and sudden death. Am. Heart J. 124, 544-549.

European Union (1980) Council Directive 80/778/EEC of 15 July 1980 relating to the quality of water intended for human consumption. Off. J. Eur. Commun. L229, 11-29.

European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Commun. L330, 32-54.

Garzon, P. and Eisenberg, M.J. (1998) Variation in the mineral content of commercially available bottled waters: implication for health and disease. Am. J. Med. 105, 125-130.

Geldreich, E.E., Taylor, R.H., Blannon, J.C. and Reasoner, D.J. (1985) Bacterial colonization of point-of-use water treatment devices. Journal AWWA 77, 72-80.

Golubev, I.M. and Zimin, V.P. (1994) On the standard of total hardness in drinking water. (In Russian.) Gig. Sanit. No. 3/1994 (volume not given), 22-23.

Haring, B.S.A. and Van Delft, W. (1981) Changes in the mineral composition of food as a result of cooking in “hard“ and “soft“ waters. Arch. Environ. Health 36, 33-35.

Hopps, H.C. and Feder, G.L. (1986) Chemical qualities of water that contribute to human health in a positive way. Sci. Total Environ. 54, 207-216.

Iwami, O., Watanabe, T., Moon, Ch.S., Nakatsuka, H. and Ikeda, M. (1994) Motor neuron disease on the Kii Peninsula of Japan: excess manganese intake from food coupled with low magnesium in drinking water as a risk factor. Sci. Total Environ. 149, 121-135.

Jacqmin, H., Commenges, D., Letenneur, L., Barberger-Gateau, P. and Dartigues, J.F. (1994) Components of drinking water and risk of cognitive impairment in the elderly. Am. J. Epidemiol. 139, 48-57.

Kondratyuk, V.A. (1989) On the health significance of microelements in low-mineral water. (In Russian.) Gig. Sanit. No.2/1989 (volume not given), 81-82.

Kozisek, F. (1992) Biogenic value of drinking water. (In Czech.) PhD thesis. National Institute of Public Health, Praha.

Kramer, M.H., Herwaldt, B.L., Craun, G.F., Calderon, R.L. and Juranek, D.D. (1996) Surveillance for Waterborne-Disease Outbreaks – United States, 1993-1994. In: CDC Surveillance Summaries, April 12, 1996. MMWR 45 (No. SS-1), 1-33.

Levander, O.A. (1977). Nutritional factors in relation to heavy metal toxicants. Fed. Proc. 36, 1683-1687.

Levin, A.I., Novikov, J.V., Plitman, S.I., Noarov, J.A. and Lastochkina, K.O. (1981) Effect of water of varying degrees of hardness on the cardiovascular system. (In Russian.) Gig. Sanit. No. 10/1981 (volume not given), 16-19.

Lutai, G.F. (1992) Chemical composition of drinking water and the health of population. (In Russian.) Gig. Sanit. No. 1/1992 (volume not given), 13-15.

Melles, Z. and Kiss, S.A. (1992) Influence of the magnesium content of drinking water and of magnesium therapy on the occurrence of preeclampsia. Magnes. Res. 5, 277-279.

Monarca, S., Zerbini, I., Simonati, C. and Gelatti, U. (2003) Drinking water hardness and chronic degenerative diseases. Part II. Cardiovascular diseases. (In Italian.) Ann. Ig.15, 41-56.

Mudryi, I.V. (1999) Effects of the mineral composition of drinking water on the population´s health (review). (In Russian.) Gig. Sanit. No.1/1999 (volume not given), 15-18.

Muzalevskaya, L.S., Lobkovskii, A.G. and Kukarina, N.I. (1993) Incidence of chole- and nephrolithiasis, osteoarthrosis, and salt arthropathies and drinking water hardness. (In Russian.) Gig. Sanit. No. 12/1993 (volume not given), 17-20.

Nadeenko, V.G., Lenchenko, V.G. and Krasovskii, G.N. (1987) Combined effect of metals during their intake with drinking water. (In Russian.) Gig. Sanit. No.12 /1987 (volume not given), 9-12.

Nardi, G., Donato, F., Monarca, S., and Gelatti, U. (2003) Drinking water hardness and chronic degenerative diseases. Part I. Analysis of epidemiological research. (In Italian.) Annali di igiene - medicina preventiva e di comunita 15, 35-40.

NIPH (National Institute of Public Health) (2003) Internal data. Prague Novikov, J.V., Plitman, S.I., Levin, A.I. and Noarov, J.A. (1983) Hygienic regulation for the minimum magnesium level in drinking water. (In Russian.) Gig. Sanit. No. 9/1983 (volume not given), 7-11.

Oehme, F.W. (ed.) (1979). Toxicity of heavy metals in the environment. Part 1. M.Dekker, New York.

Oh, C.K., Lücker, P.W., Wetzelsberger, N. and Kuhlmann, F. (1986) The determination of magnesium, calcium, sodium and potassium in assorted foods with special attention to the loss of electrolytes after various forms of food preparations. Mag.- Bull. 8, 297-302.

Payment, P. (1989) Bacterial colonization of reverse-osmosis water filtration units. Can. J. Microbiol. 35, 1065-1067.

Payment, P., Franco, E., Richardson, L. and Siemiatycki, J. (1991) Gastrointestinal health effects associated with the consumption of drinking water produced by point-of-use domestic reverse-osmosis filtration units. Appl. Environ. Microbiol. 57, 945-948.

Plitman, S.I., Novikov, Yu.V., Tulakina, N.V., Metelskaya, G.N., Kochetkova, T.A. and Khvastunov, R.M. (1989) On the issue of correction of hygenic standards with account of drinking water hardness. (In Russian.) Gig. Sanit. No. 7/1989 (volume not given), 7-10.

Pribytkov Yu N. (1972) ….(In Russian.) Gig. Sanit. No…., 103-105.

Rakhmanin Yu A., Lycnikova, T.D., ., Michailova, R.I. (1973) Coll.: Water Hygiene and the Public Health Protection of Water Bodies (In Russian.), Moscow, Acad. Med. Sci. USSR, fasc. 3, 44-51.

Rakhmanin, Yu A., Bonasevskaya, T.I., Lestrovoy, A.P., Michailova, R.I., Guscina, L.M. (1976) Coll.: Public Health Aspects of Environmental Protection (In Russian.), Moscow, Acad. Med. Sci. USSR, fasc. 3, 68-71.

Rakhmanin, Yu.A., Mikhailova, R.I., Filippova, A.V., Feldt, E.G., Belyaeva, N.N., Lamentova, T.G. and Kumpan, N.B., (1989) On some aspects of biological effects of distilled water. (In Russian.) Gig. Sanit. No. 3/1989 (volume not given), 92-93.

Rachmanin, Yu.A., Filippova, A.V., Michailova, R.I., Belyaeva, N.N., Lamentova, T.G., Kumpan, N.B. and Feldt, E.G. (1990) Hygienic assessment of mineralizing lime materials used for the correction of mineral composition of low-mineralized water. (In Russian.) Gig. Sanit. No. 8/1990 (volume not given), 4-8.

Robbins, D.J. and Sly, M.R. (1981) Serum zinc and demineralized water. Am. J. Clin. Nutr. 34, 962-963.

Rubenowitz, E., Molin, I., Axelsson, G. and Rylander, R. (2000) Magnesium in drinking water in relation to morbidity and mortality from acute myocardial infarction. Epidemiology 11, 416-421.

Sadgir, P. and Vamanrao, A. (2003) Water in Vedic Literature. In Abstract Proceedings of the 3rd International Water History Association Conference, Alexandria 2003.

Sauvant, M-P. and Pepin, D. (2002) Drinking water and cardiovascular disease. Food Chem. Toxicol. 40, 1311-1325.

Schumann, K., Elsenhans, B., Reichl, F.X., Pfob, H. and Wurster, K.H. (1993) Does intake of highly demineralized water damage the rat gastrointestinal tract? Vet. Hum. Toxicol. 35, 28-31.

Sklyar, E.F., Amiragov, M.S., Berezkin, S.V., Kurochkin, M.G. and Skuratov, V.M. (2001) Recovered water mineralization technique. (In Russian.) Aviakosm. Ekolog. Med. 35(5), 55-59.

Thompson, D.J. (1970) Trace element in animal nutrition. 3rd ed. Int. Minerals and Chem. Corp., Illinois.

Verd Vallespir, S., Domingues Sanches, J., Gonzales Quintial, M., Vidal Mas, M., Mariano Soler, A.C., de Roque Company, C. and Sevilla Marcos, J.M. (1992) Association between calcium content of drinking water and fractures in children (in Spanish). An. Esp. Pediatr. 37, 461-465.

WHO (1978) How trace elements in water contribute to health. WHO Chronicle 32, 382-385.

WHO (1979) Health effects of the removal of substances occurring naturally in drinking water, with special reference to demineralized and desalinated water. Report on a working group (Brussels, 20-23 March 1978). EURO Reports and Studies 16. World Health Organization, Copenhagen.

WHO (1980) Guidelines on health aspects of water desalination. ETS/80.4. World Health Organization, Geneva.

WHO (1996) Guidelines for Drinking-water Quality. 2nd edn, vol. 2, Health Criteria and Other Supporting Information. pp 237-240. World Health Organization, Geneva.

Williams, A.W. (1963) Electron microscopic changes associated with water absorption in the jejunum. Gut 4, 1-7.

Yang, Ch.Y., Chiu, H.F., Chiu, J.F., Tsai, S.S. and Cheng, M.F. (1997) Calcium and magnesium in drinking water and risk of death from colon cancer. Jpn. J. Cancer Res. 88, 928-933.

Yang, Ch.Y., Cheng, M.F., Tsai, S.S. and Hsieh, Y.L. (1998) Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Jpn. J. Cancer Res. 89, 124-130.

Yang, Ch.Y., Chiu, H.F., Cheng, M.F., Tsai, S.S., Hung, Ch.F. and Lin, M.Ch. (1999a) Esophageal cancer mortality and total hardness levels in Taiwan’s drinking water. Environ. Research, Section A 81, 302-308.

Yang, Ch.Y., Chiu, H.F., Cheng, M.F., Tsai, S.S., Hung, Ch.F. and Tseng, Y.T. (1999b) Pancreatic cancer mortality and total hardness levels in Taiwan’s drinking water. J. Toxicol. Environ. Health A 56, 361-369.

Yang, Ch.Y., Tsai, S.S., Lai, T.Ch., Hung, Ch.F. and Chiu, H.F. (1999c) Rectal cancer mortality and total hardness levels in Taiwan’s drinking water. Environ. Research, Section A 80, 311-316.

Yang, Ch.Y., Chiu, H.F., Cheng, M.F., Hsu, T.Y., Cheng, M.F. and Wu. T.N. (2000) Calcium and magnesium in drinking water and the risk of death from breast cancer.

J. Toxicol. Environ. Health, Part A 60, 231-241. Yang, Ch.Y., Chiu, H.F., Chang, Ch. Ch., Wu, T.N. and Sung, F.Ch. (2002) Association of very low birth weight with calcium levels in drinking water. Environ. Research, Section A 89, 189-194.

Better health? Better taste? Zero waste? Continuous flow? That's Atla.